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Summary: Interest in supercritical fluids extraction (SFE) is increasing throughout many scientific and 
industrial fields. The common solvent for use in SFE is carbon dioxide. However, pure carbon dioxide 
frequently fails to efficiently extract the essential oil from a sample matrix, and modifier fluids such as 
methanol should be used to enhance extraction yield. A more efficient use of SFE requires quantitative 
prediction of phase equilibrium of this binary system, carbon dioxide – methanol. The purpose of the 
current research is modeling carbon dioxide – methanol system using artificial neural network (ANN). 
Results of ANN modeling has been compared with experimental data as well as thermodynamic equations 
of state. The comparison shows that the ANN modeling has a higher accuracy than thermodynamic 
models. 
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Introduction 
 

Supercritical fluid extraction (SFE) is one of 
the extraction methods which widely used in 
industrial settings. SFE is a new method for 
producing medicinal plant extracts [1]. Advantages of 
this method over classical methods of extraction are: 
1- It has a higher quality product. 2- By changing the 
temperature and pressure, the product can achieve the 
desired quality. 3- Separation of solvent and solute is 
simply done by reducing the pressure. 4- Due to low 
operating temperature process, supercritical extrac-
tion is one of the common methods for extraction of 
temperature-sensitive materials, such as pharmaceut-
ical industry. 5- The solvent is un-toxic. Carbon 
dioxide has been the solvent of choice for most SFE 
studies primarily because it has a relatively low 
critical temperature and pressure, low toxicity, relati-
vely high purity and low cost [2, 3]. However, pure 
CO2 frequently fails to efficiently extract several 
organics from a sample matrix, and modifier fluids 
(co-solvents) should be used to increase extraction 
efficiency [4]. Methanol is one of the most common 
co-solvent in SFE. Studying of this binary systems, 
carbon dioxide–methanol, behavior can leads to 
higher extraction efficiency. The experimental vapor-
liquid equilibrium data (VLE) for this binary system 
is available only for some specified isotherms. 
However thermodynamic equation of state could 
predict the VLE data for each isotherm but they have 
poor prediction especially in high pressure region 
(the region of interest by SFE process). Artificial 
neural network which is used in many of engineering 
fields seems to be a good method for modeling of 
binary VLE system. About ANN modeling of SFE 
processes, Izadifar and Abdolahi [5] developed a 
feed-forward multi-layer neural network with 

Levenberg–Marquardt training algorithm to predict 
yield for supercritical carbon dioxide extraction of 
black pepper essential oil. Statistical analyses showed 
that the neural network predictions had an excellent 
agreement with experimental data. Also, Kamali and 
Mousavi [6] studied the extraction of α-pinene using 
supercritical carbon dioxide. They compared three 
modeling approaches including the dense gas model 
with Peng–Robinson equation of state as an 
analytical model, a three layers feed forward neural 
network and a hybrid analytical–neural network 
structure.  
 

The purpose of a neural network is to 
calculate output values from input values by some 
internal calculations. Neural network have several 
layers. The first layer is named the input layer, and 
each of its neurons receives information corresp-
onding to one of the independent variables used as 
inputs. The last layer is named output layer. The 
other layers called hidden layers. A neural network 
consists of numbers of simple processing elements 
called neurons. Each neuron of neural network is 
connected to others by means of direct commun-
ication link, each with an associated weight, which 
represents information being used by the net to solve 
the problem [7, 8]. The weights of the connections 
between neurons should be adjusted in order to 
decrease the error between estimated and expected 
values for the entire database. In this technique, the 
experimental data set was divided into three groups: 
60 % for training, 20 % for validation, and 20 % for 
testing. The first group is totally used for learning 
and training the ANN and is termed the training set. 
The selection of the database to train a neural 

J.Chem.Soc.Pak., Vol. 34, No.5, 2012 

*To whom all correspondence should be addressed. 



FARIBORZ NASRI et al.,      J.Chem.Soc.Pak.,Vol. 34, No. 5, 2012   1071 

network is of great importance and it must be trained 
on large and comprehensive set of reliable 
experimental data. By using the data in this set, the 
weights of the parameters in the ANN model are 
determined. The second group is termed testing set 
used to calculate the ANN estimation power. The 
third group of data is termed validation set used to 
prevent overtraining probability. An over trained 
network has typically learned seen training set 
completely but cannot give accurate estimation for 
unseen data.  
 

Neural network training can be made more 
efficient if perform certain preprocessing steps on the 
network inputs and targets. Network-input processing 
functions transform inputs into a better form for the 
network use. Processing functions associated with a 
network output transform targets into a better form 
for network training, and reverse transformed outputs 
back to the characteristics of the original target data. 
A common approach that used in the current study 
for scaling network inputs and targets is to normalize 
the mean and standard deviation of the training set.  
 

The main objective of this study is to model 
carbon dioxide – methanol system using ANN. For 
developing the ANN model, vapor-liquid experim-
ental data of carbon dioxide – methanol have been 
used [9, 10]. 
 

Results and discussion 
 

 The ANN results were compared with the 
experimental data of Joung et. al [9] and Secuianu et. 
al [10] for the isotherms of  313.15, 320, 330, 335.65, 
342.8, 293.15, 298.15, 310.15 and 323.15 K. In order 
to show the smooth trend of ANN predictions, the 
comparison results at several isotherms were shown 
in Fig. 1 and 2. In these Figures, the solid lines are 

the model prediction and the points are the 
experimental data. Based on these two Figures, the 
ANN results experiences a smooth and accurate trend 
and pass through the experimental data. In particular, 
the ANN model is capable to predict the VLE data at 
high pressure which is the interesting region for SFE 
process. 
 

As mentioned, Joung et. al [9] and Secuianu 
et. al [10] were modeled the CO2-methanol data 
using cubic equations of state. From Fig. 1 and 2 as 
well as the data available in the two mentioned 
references, it may be hard to understand which 
model, ANN or cubic equations of state, is more 
precisely. This vagueness can be clarified using the 
graphs of pressure and vapor mole fraction based on 
both models. When compared the performance of the 
ANN model with cubic equations of state model (Fig. 
3), the ANN model is able to predict the equilibrium 
pressure much more efficiently. This is mainly due to 
the fact that the ANN model well learned with the 
training data. But, the error for vapor mole fraction 
prediction is almost the same for both models (Fig. 
4). This may be attributed to the fact that the 
experimental vapor mole fraction data were laid in a 
narrow range cause achieving prediction with high 
accuracy to be difficult. It should be noted that the 
terms AADP% and AADy% in these Figures are 
calculated from the following equations: 
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Fig. 1: Vapor liquid equilibria of carbon dioxide-methanol system, comparison between ANN results with 
experimental data at 313 K ( ), 330 K ( ) and 342 K ( ). 
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Fig. 2: Vapor liquid equilibria of carbon dioxide-methanol system, comparison between ANN results with 

experimental data at 293.15 K ( ), 298.15 K ( ), 310.15 K ( ), and 323.15 K ( ). 
 

 
Fig. 3: Average relative errors in pressure, comparison between ANN results with EOS results. 
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Fig. 4: Average relative error of carbon dioxide mole fraction in vapor, comparison between ANN with EOS 

results. 
 

Where exp
iP and exp

iy are the experiment 
pressure and carbon dioxide mole fraction in vapor 
phase, respectively. Also, ANN

iP and ANN
iy are the 

pressure and carbon dioxide mole fraction in vapor 
phase predicting by the ANN model, respectively. In 
addition, N is the number of employed data. 
 
 The absolute errors of pressure and vapor 
mole fraction, for the whole data set, were depicted in 
Fig. 5. Based on this Figure, the ANN prediction for 
vapor mole fraction is much more accurate than 
pressure. Also, the maximum error for pressure and 
vapor mole fraction don’t exceed from 0.16 and 0.08, 
respectively.  
 
 Generally, ANN does not exhibit the 
extrapolation capability. But, a well-trained neural 
network is not only capable of calculating the 
expected outputs of any input set of training data, but 
should also be able to forecast with an satisfactory 
degree of accuracy the outcome of any unfamiliar set 
of input located within the range of training data. 

Many other VLE data for the carbon dioxide-
methanol systems have been published in literature 
[11-17]. In order to show the ANN model capability 
for prediction of VLE data at other temperature, the 
model was further validated with some unseen 
experimental data from the mentioned literature. This 
comparison for the temperature range from 290 to 
310K was shown in Fig. 6, and for temperature 
ranges from 310K to 350K was shown in Fig. 7. The 
red plus sign in these Figures are the experimental 
data and the black plus sign are the ANN results. The 
results indicate that ANN model not only predict 
reasonably the train, test and validation data, but also 
well model the unseen experimental data in the 
literature. Taking a closer look to these Figures it is 
concluded that unlike cubic equation of state that 
cannot predict the critical region of VLE data, the 
ANN has well results in this region. As obtaining the 
VLE data close to critical point is very difficult than 
low pressure region, ANN can be taken into account 
for obtaining the required data at the high pressure 
without need to any additional experiments. 
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Fig. 5: Absolute error of ANN model in pressure and vapor mole fraction for the whole experimental data. 
 

 
Fig. 6: Vapor liquid equilibria of carbon dioxide-methanol system, comparison between ANN results (black 

plus sign) with experimental data (red plus sign) at 290K to 310K. 
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Fig. 7: Vapor liquid equilibria of carbon dioxide-methanol system, comparison between ANN results (black 

plus sign) with experimental data (red plus sign) at 310K to 350K. 
 
 
Experimental 
 
Vapor-Liquid Experimental Data 
 

In this paper, carbon dioxide – methanol 
experimental data of Joung et al. [9] and Seuianu et 
al. [10] have been used for developing an ANN 
model. These data are presented in Table-1 and 
Table-2.  
 

Although a detailed description of the 
experimental apparatus was presented by both 
authors groups, the authors briefly explain the 
measurement method of VLE data by Seuianu et al 
[10]. Here as it carried out recently. The main part of 
the experiment apparatus was a visual cell with two 
sapphire windows and variable volume. The internal 
loop of the equipment includes an equilibrium cell 
that was evacuated with a vacuum pump. The cell 

was charged with methanol; after that, it was heated 
to the experimental temperature and was pressurized 
with carbon dioxide to the experimental pressure. 
The mixture in the cell was stirred for a few hours. 
Then samples of the liquid and vapor phase were 
collected by depressurization and expansion into 
glass traps, by using manually operated valves. The 
amount of carbon dioxide in each phase was obtained 
by expansion in a glass bottle of calibrated volume 
[10]. 
 
ANN Structure 
 

In this paper, the calculations were done by 
the bubble P method. In this method, pressure and the 
mole fractions of the components in vapor phase, at 
given temperature and liquid phase mole fraction, are 
obtained. So, the ANN architecture contains two 
inputs, temperature and liquid mole fraction, and two 
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outputs, pressure and vapor mole fraction. In order to 
obtain accurate ANN results, the parameters that 
influence the ANN performance such as number of 
hidden layers, number of hidden layer’s neuron and 
learning rate were optimized. Choosing a suitable 
number of neurons in the hidden layers is very 
important aspect in the neural networks. Using too 
many neurons will raise the training time and may 
leads to the over fitting problem. On the other side, 
using smaller number hidden neurons increases the 
probability of learning algorithm becoming trapped 
in a local minimum [18]. Selection of the optimal 
ANN parameters was performed by systemically 
changing its value in the training step. Another 
important parameter in ANN design is the type of 
transfer functions. Different transfer functions, 
including hardlim, tansig, logsig, poslin, satlin and 

purelin, were employed for neurons in the different 
layers. These transfer functions were examined in 
each layer separately and with respect to the mean 
squared error of the testing data the best transfer 
functions were chosen. Finally, tansig for hidden 
layers and purelin for output layer gave the best 
performance compared to other activation functions. 
A network with a architecture that depicted in Fig. 8 
was found to yield the most accurate results after 
several configurations were examined with different 
number of hidden layers each having different 
number of neurons in them.  
  

The weights and biases which determine the 
employed ANN in the present study were presented 
in Table-3. 
 

 

 
 

Fig. 8: Schematic of the current multi-layer feed forward neural network model. 
 
Table-1: Vapor–liquid equilibrium data for CO2 (1)–methanol (2) system obtained by Joung et al. [7]. 

T(K) P(MPa) x(-) y(-) T(K) P(MPa) x(-) y(-) 
313.15 0.69 0.0424 0.0977 335.65 0.84 0.0336 0.8592 
313.15 2.73 0.1479 0.9781 335.65 3.08 0.1208 0.9502 
313.15 3.78 0.2199 0.9832 335.65 4.41 0.1768 0.9620 
313.15 5.60 0.3546 0.9857 335.65 6.52 0.2760 0.9671 
313.15 6.57 0.4555 0.9846 335.65 7.44 0.3247 0.9664 
313.15 7.84 0.7651 0.9757 335.65 9.32 0.4471 0.9583 
313.15 7.93 0.8218 0.9743 335.65 10.28 0.5330 0.9466 
313.15 7.99 0.8968 0.9745 335.65 11.15 0.6651 0.8948 
313.15 8.06 0.9147 0.9688 335.65 11.25 0.6762 0.8901 
313.15 8.10 0.9298 0.9635 335.65 11.44 0.7759 0.8250 
313.15 8.12 0.9350 0.9452 335.65 11.45 0.7925 0.8059 
313.15 8.15 0.9351 0.9351 335.65 11.46 0.7940 0.7940 

        
320.15 0.60 0.0326 0.9150 342.80 0.67 0.0247 0.7999 
320.15 2.69 0.1371 0.9717 342.80 3.13 0.1145 0.9403 
320.15 3.70 0.1913 0.9778 342.80 4.20 0.1553 0.9510 
320.15 5.72 0.3166 0.9815 342.80 5.23 0.1961 0.9559 
320.15 6.50 0.3750 0.9804 342.80 7.37 0.2909 0.9586 
320.15 8.14 0.5505 0.9738 342.80 8.40 0.3427 0.9574 
320.15 8.62 0.6757 0.9662 342.80 10.41 0.4664 0.9432 
320.15 8.85 0.8053 0.9484 342.80 11.10 0.5234 0.9312 
320.15 8.88 0.8287 0.9441 342.80 11.64 0.5806 0.9108 
320.15 8.93 0.8791 0.9010 342.80 12.23 0.6792 0.8498 
320.15 8.95 0.8860 0.8860 342.80 12.21 0.6719 0.8526 

    342.80 12.37 0.7311 0.8026 
330.00 0.78 0.0346 0.8857 342.80 12.39 0.7603 0.7720 
330.00 2.24 0.0960 0.9537 342.80 12.40 0.7610 0.7610 
330.00 3.12 0.1342 0.9610     
330.00 5.17 0.2365 0.9717     
330.00 6.07 0.2845 0.9725     
330.00 8.90 0.4836 0.9647     
330.00 9.42 0.5382 0.9584     
330.00 10.22 0.6779 0.9438     
330.00 10.48 0.7401 0.8777     
330.00 10.55 0.7694 0.8619     
330.00 10.57 0.8215 0.8572     
330.00 10.59 0.8243 0.8243     
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Table-2: Vapor–liquid equilibrium data for CO2 (1)–methanol (2) system obtained by Seuianu et al. [8]. 
T(K) P(MPa) x(-) y(-) T(K) P(MPa) x(-) y(-) 

293.15 0.79 0.0582 0.9842 310.15 0.48 0.0254 0.9404 
293.15 1.55 0.1185 0.9932 310.15 1.56 0.0846 0.9788 
293.15 2.42 0.1884 0.9951 310.15 2.15 0.1303 0.9835 
293.15 3.1 0.2572 0.996 310.15 2.73 0.1609 0.9857 
293.15 3.77 0.351 0.9967 310.15 3.22 0.1933 0.9872 
293.15 5.03 0.6079 0.9969 310.15 3.68 0.219 0.9878 
293.15 5.72905 1 1 310.15 4.09 0.2556 0.9884 

    310.15 4.6 0.2859 0.9894 
298.15 0.5 0.0337 0.9595 310.15 5.14 0.3241 0.9892 
298.15 0.6 0.0375 0.9725 310.15 5.18 0.3282 0.989 
298.15 0.99 0.0654 0.9815 310.15 5.78 0.3984 0.9888 
298.15 1.1 0.0715 0.9835 310.15 6.24 0.4416 0.9884 
298.15 1.48 0.0989 0.9883 310.15 6.82 0.5905 0.9871 
298.15 1.58 0.1092 0.9888 310.15 7.12 0.6474 0.9864 
298.15 1.75 0.1257 0.9892 310.15 7.16 0.6502 0.9856 
298.15 2.01 0.1394 0.9898 310.15 7.21 0.7183 0.9852 
298.15 2.3 0.1662 0.9904 310.15 7.33 0.7491 0.9844 
298.15 2.68 0.1925 0.9912 310.15 7.58 0.9624 0.9826 
298.15 3.06 0.2252 0.992 310.15 7.6 0.9683 0.983 
298.15 3.35 0.2438 0.9924     
298.15 3.56 0.2722 0.9926 323.15 1.03 0.0383 0.9298 
298.15 3.79 0.2814 0.9927 323.15 2.2 0.0982 0.9693 
298.15 3.86 0.2946 0.9929 323.15 3.86 0.1784 0.982 
298.15 4.29 0.3444 0.993 323.15 5.12 0.2479 0.9772 
298.15 4.53 0.3721 0.9931 323.15 6.11 0.3049 0.9793 
298.15 4.55 0.3769 0.9931 323.15 7.19 0.3839 0.9739 
298.15 4.67 0.3869 0.9931 323.15 8.74 0.5514 0.9731 
298.15 4.92 0.4315 0.993 323.15 9.3 0.6632 0.9532 
298.15 4.99 0.4446 0.9929 323.15 9.48 0.725 0.9447 
298.15 5.15 0.4755 0.9928 323.15 9.51 0.8154 0.8478 
298.15 5.18 0.4784 0.9928     
298.15 5.56 0.5547 0.9929     
298.15 5.61 0.5675 0.993     
298.15 5.68 0.6283 0.9929     
298.15 5.81 0.6809 0.9928     
298.15 5.86 0.6892 0.9928     
298.15 5.98 0.8281 0.9936     
298.15 5.99 0.8285 0.9938     
298.15 6.43425 1 1     

 
Table-3: The (2-6-6-2) ANN parameters. 

Hidden layers parameters Output layer parameters
Hidden layer 1 Hidden layer 2  

IW(1,1) b1 IW(2,1) b2 IW(3,2) n i
 

Input1  Input2 Bias for ni 

m
j 

n1 n2 n3 n4 n5 n6 Bias for mi 

m
j 

Output 1 Output2

n 1
 

-0.02369 3.1222 3.2803 m
1 0.42994 1.4731 0.15366 0.3497 0.91645 -0.05061 -3.0162 m
1 1.2627 0.45493 

n 2
 

-1.6928 1.9523 1.9527 m
2 0.12015 1.0343 -0.83241 -0.74035 0.48741 0.27313 -1.462 m
2 -0.20695 -1.2467 

n 3
 

-2.2359 -0.50053 1.5598 m
3 -0.08415 -0.05737 -0.88943 -1.37 -0.51051 -1.677 -0.32962 m
3 0.947 0.017953

n 4
 

-1.0299 -0.16127 -0.27328 m
4 -0.28459 0.89202 -0.52923 0.093624 -0.23566 1.2698 1.1375 m
4 0.7249 -0.20299

n 5
 

-0.15004 2.6085 -1.0389 m
5 0.2927 0.40379 -0.02365 -2.061 -0.77261 -0.81854 0.61566 m
5 1.0671 1.0526 

n 6
 

-2.4411 0.76482 -3.4252 m
6 1.092 -1.461 0.51779 -0.44063 2.3218 0.40433 1.8187 m
6 0.29054 -0.10898

Bias for output layer -0.72559 -0.92346
 
Conclusion 
 
 In this paper, the vapor liquid equilibrium 
data for the binary system of carbon dioxide + 
methanol were modeled with ANN. The experimental 
data set was divided into three parts: 60 % for 
training to adjust the parameters of the models, 20 % 
for validation to prevent the overtraining and 20 % 
for testing set to test the model. The Best neural 
network result has been obtained with two hidden 
layer network, with 6 neurons. The high accurate 
results between the network prediction and the 
corresponding experimental data prove that modeling 

of phase equilibrium processes using ANN is a 
satisfactory method. The ANN results were compared 
also with the results obtained by cubic equations of 
state in the literature. The comparison showed that 
unlike cubic equation of state that cannot predict the 
critical region of carbon dioxide + methanol VLE 
data, the ANN predictions were in satisfactory 
agreement with the literature data. As obtaining the 
VLE data near critical point is very difficult than low 
pressure region, ANN can be taken into account for 
obtaining the required data in this region without 
need to any extra experiment. 
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